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Abstract Earth medium is not completely elastic, with its

viscosity resulting in attenuation and dispersion of seismic

waves. Most viscoelastic numerical simulations are based

on the finite-difference and finite-element methods. Tar-

geted at viscoelastic numerical modeling for multilayered

media, the constant-Q acoustic wave equation is trans-

formed into the corresponding wave integral representation

with its Green’s function accounting for viscoelastic coeffi-

cients. An efficient alternative for full-waveform solution

to the integral equation is proposed in this article by

extending conventional frequency-domain boundary ele-

ment methods to viscoelastic media. The viscoelastic

boundary element method enjoys a distinct characteristic of

the explicit use of boundary continuity conditions of dis-

placement and traction, leading to a semi-analytical solu-

tion with sufficient accuracy for simulating the viscoelastic

effect across irregular interfaces. Numerical experiments to

study the viscoelastic absorption of different Q values

demonstrate the accuracy and applicability of the method.

Keywords Viscoelastic media � Viscoelastic boundary

element method � Frequency-domain implementation �
Viscoelastic numerical modeling

1 Introduction

The viscoelastic absorption causes energy loss during the

wave propagation in real Earth media. The viscosity of the

Earth shows obvious frequency dependence, especially for

high-frequency components. The resulting serious disper-

sion reduces seismic resolution and causes difficulties for

geological interpretation. The compensation of viscoelastic

attenuation is an important issue in seismic data processing.

Various seismic numerical methods in viscoelastic media

(Dvorkin and Mavko 2006) have been widely used to

understand the detailed characteristics of viscoelastic

absorption. However, most viscoelastic numerical simula-

tions are based on the finite-difference (FD) and finite-

element (FE) methods. In this study, we develop an effi-

cient viscoelastic boundary element method (BEM) for the

study of viscoelastic absorption.

With the extensive publications in seismology (Aki and

Richards 1980; Emmerich and Korn 1987; Liao and

McMechan 1996; Carcione et al. 2002; Carcione 2010), the

implementation of viscoelastic numerical modeling can be

simply divided into two categories: complex-number

velocity methods in the frequency domain and quality

factor-based wave equation methods in the time domain.

The time-domain methods use a series of viscous param-

eters (i.e., the standard linear body) to describe the medium

viscosity. These methods are based on various approximate

constant-Q models, such as Kelvin-Voigt model, Maxwell

model, and standard linear solid model (SLS). Maxwell

model cannot describe the elasticity creep, whereas Kelvin-

Voigt model cannot describe the stress relaxation. The SLS

model (Carcione 2007) can describe both the elasticity

creep and the stress relaxation, more closely approximating

the real law of seismic wave propagation in viscoelastic
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media. It is not easy to describe frequency-dependent

attenuation coefficients and dispersion effects for the time-

domain methods. To simplify the problem, the constant-

Q model (Kjartansson 1979) assumes that the quality factor

is a linear function of frequency.

Conventional viscoelastic FD modeling can accurately

describe both the kinematics and dynamics characteristics of

wave propagation, but requires huge computations and

computer memories. As an efficient alternative, Varela

(1993) proposes a one-way time-domain viscoelastic mod-

eling algorithm with a higher computational efficiency, but

involved in a single series expansion that is valid for bigger

Q values. To reduce memory requirements, Lu and Hanyga

(2004) use an intermediate variable to solve the fractional-

order derivative, which causes huge computations. Chen and

Holm (2004) apply a fractional Laplace operator to the

calculation of viscous wavefields to improve computational

efficiency. Treeby and Cox (2010) further explicitly

decompose the dispersion and attenuation terms in the vis-

coelastic FD equation, greatly improving computational

efficiency. Viscoelastic seismic imaging of viscosity

acoustic media can compensate viscoelastic dispersion and

attenuation and has been widely used to improve seismic

imaging quality (Zhu 2014; Zhu et al. 2014).

Unlike the FD and FE methods that are characteristic of

the implicit use of boundary conditions, the explicit use

will lead to a category of semi-analytical methods. For

example, frequency-domain BEMs (e.g., Dravinski 1982;

Sánchez-Sesma and Campillo 1991; Fu and Mu 1994; Fu

2002), global generalized reflection/transmission matrices

methods (Chen 1990, 1995, 1996), discrete wavenumber

BEMs (Bouchon 1982; Bouchon et al. 1989; Fu and

Bouchon 2004), global reflection/transmission BEMS (Ge

and Chen 2007, 2008), dual reciprocity BEMs (Dehghan

and shirzadi 2015; Dehghan and Safarpoor 2016), and

some hybrid schemes (Moczo et al. 1997; Fu and Wu 2001)

are more accurate in simulating reflection/transmission

across irregular interfaces and have been widely used in

seismology. Targeted at numerical wave propagation in

layered viscoelastic media with an explicit use of boundary

continuity conditions, an efficient alternative for full-

waveform viscoelastic numerical modeling is proposed in

this article by extending conventional frequency-domain

BEMs to viscoelastic media.

We first transform the constant-Q acoustic wave equation

into the corresponding wave integral representation with the

Green’s function accounting for viscoelastic coefficients in

the frequency domain. The frequency-domain BE method is

used to solve the integral equation for each subregion in

multilayered media, and then the boundary conditions

between subregions are used to assemble the BE submatrix

from each subregion into a global system of matrices. In

general, the resultant global coefficient matrix is sparse and

narrow banded and can be solved by an improved block

Gaussian elimination method. To show the applicability of

the method, we present numerical examples with vis-

coelastic media to study the viscoelastic effect of different

Q values on wave propagation.

2 Viscoelastic integral equations for multilayered

media

Seismic response uðrÞ for steady-state scalar wave propa-

gation with a constant velocity v satisfies the following

scalar Helmholtz equation

r2uðrÞ þ k2uðrÞ ¼ �sðr;xÞ; ð1Þ

where the wavenumber k = x/v and s(r,x) is the body

force. Assuming the source point is located at r0, the source

term can be expressed as

sðr;xÞ ¼ SðxÞdðr� r0Þ; ð2Þ

where SðxÞ is the source spectrum and dðr� r0Þ is the

delta function.

As is well known, wave propagation simulation in the

frequency domain is easy to incorporate the viscoelastic

coefficient into wave equation by expressing the acoustic

velocity as a plural form. The resultant viscoelastic wave

equation with a complex velocity plays an attenuation

role in simulating wave propagation in viscoelastic

media. We use the following complex-velocity expres-

sion (Ravaut et al. 2004) for the viscoelastic wave

equation,

1

�v
¼ 1

v
1þ i

2Q
signðxÞ

� �
; ð3Þ

where i =
ffiffiffiffiffiffiffi
�1

p
; �v is the complex velocity corresponding

to the real velocity v, and Q is the quality factor.

Replacing the real velocity in Eq. (1) with the complex

velocity by Eq. (3), seismic response uðrÞ for viscoelastic
wave propagation satisfies the following equation

r2uðrÞ þ ð1� aiÞk2uðrÞ ¼ �sðr;xÞ; ð4Þ

where the attenuation coefficient a can be computed by the

quality factor Q. Defining the complex wavenumber as

ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aið Þk

p
, the equation can be further compacted as

r2uðrÞ þ k2auðrÞ ¼ �sðr;xÞ; ð5Þ

Consider 2D steady-state scalar wave propagation in a

homogenous region X bounded by an irregular boundary C.
The seismic response uðrÞ at location r [ X can be
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composed of the incident wavefield f(r) and the boundary

wavefield us(r) scattered by the irregular boundary C

u rð Þ ¼ f rð Þ þ us rð Þ: ð6Þ

The incident wavefield in the background medium can

be expressed as

f ðrÞ ¼
Z
X
sðr0;xÞGðr; r0Þdr0 ¼ sðxÞGðr; r0Þ; ð7Þ

which can be given directly by the characteristics of the

source in the numerical implementation. Based on the

Helmholtz integral representation formulas for Eq. (1), the

boundary wavefield satisfies the boundary integral equation

usðrÞ ¼
Z
C

Gðr; r0Þ ouðr
0Þ

on
� uðr0Þ oGðr; r

0Þ
on

� �
dr0; ð8Þ

where Gðr; r0Þ and oGðr;r0Þ
on

are the free-space Green’s func-

tions, as the basic solution of the integral equation of dis-

placement and stress in the background of the

homogeneous viscoelastic medium, respectively. q/qn
denotes differentiation with respect to the outward normal

of the boundary C. The viscoelastic Green’s function in the

complex domain has the similar form as the elastic Green’s

function in the real domain, that is, Gðr; r0Þ ¼
iH

ð1Þ
0 ðka r0 � rj jÞ=4 for 2D problems and Gðr; r0Þ ¼

eika r
0�rj j=ð4p r0 � rj jÞ for 3D problems, where H

ð1Þ
0 denotes

the complex Hanker function.

Substituting Eqs. (7), (8) in (6) and considering the

‘‘boundary naturalization’’ of the integral equation (that is,

a limit analysis when the ‘‘observation point’’ r approaches

the boundary C and tends to coincide with the ‘‘scattering

point’’ r0 [ C), we obtain the following boundary integral

equation

Z
C

Gðr; r0Þ ouðr
0Þ

on
� uðr0Þ oGðr; r

0Þ
on

� �
dr0 þ SðxÞGðr; r0Þ

¼
uðrÞ r 2 X

CðrÞuðrÞ r 2 C

0 r 62 �X

8><
>: ;

ð9Þ

where �X = X ? C and the coefficient C(r) depends on the

local geometry at r on C. C(r) = h/2p with h the opening

angle at r in the direction of X. The boundary integral

Eq. (9) for viscoelastic wave propagation is a Fredholm

integral equation of the second kind. According to the

Fredholm theorems, we can prove that the solution of

Eq. (9) exists and is unique for an internal boundary value

problem (all r, r0 [ �X) with both Neumann and Dirichlet

boundary conditions. The solution is also stable because

the singularity that arises when r ? r0 in the Green’s

function is only apparent and can be removable (Fu and Mu

1994). For numerical calculations, however, particular

techniques are required for the evaluation of the weakly

singular integrals, for instance, the Bouchon’s discrete

wavenumber expansion of the Green’s functions (Bouchon

1982) and the analytical treatment (Fu and Mu 1994) that is

based on the fact that the asymptotic behavior of the

integral kernels can be exactly represented by their static

counterparts.

3 Numerical discretization of the viscoelastic integral

equation

In this section, the frequency-domain boundary element

method is used to solve the viscoelastic boundary integral

equation for a full-wave solution in multilayered media.

The problem to be studied is illustrated by a multilayered

viscoelastic model as shown in Fig. 1. In this model, there

are M ? 1 homogeneous layers over a free space, with

each layer bounded by two irregular interfaces and a source

embedded in arbitrary layer. For simplicity, we restrict the

present study to the 2D acoustic problem (or SH problem).

For instance, the elastic properties of the mth layer are

described by the velocity vm, density qm, and attenuation

coefficient am. The seismic response u(r) satisfies the fol-

lowing boundary conditions: the continuities of displace-

ment and traction across interfaces and the radiation

boundary conditions imposed on the far-field behavior at

infinity.

The collocation method has been extensively used for

numerical solutions of all types of integral equations. The

numerical solution of Eq. (9) by the collocation method

involves several steps. First, the discretization of Eq. (9)

can be done in each layer by numerical methods such as the

collocation method or weighted residual method. Then, all

equations are assembled into a set of simultaneous matrix

equations by using the boundary conditions of continuity

Fig. 1 Configuration of a multilayered viscoelastic model
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for displacement and traction across all interfaces. This

global matrix is sparse or narrow banded, depending on the

structure of the model.

We discretize all interfaces in the mth layer into L

boundary elements denoted by Ce (e = 1, 2,…, L) resulting

in a total of N nodes. In the collocation method, interpo-

lation shape functions U are used so that all the variables

(r, u, and qu/qn) are approximated by the linear combina-

tion of their nodal values over an element Ce defined

geometrically between the nodes I1 and I2, for example,

u nð Þ ¼
XI2
l¼I1

u rlð ÞUl nð Þ

ouðnÞ
on

¼
XI2
l¼I1

t rlð ÞUlðnÞ

8>>>>><
>>>>>:

; ð10Þ

where n denotes the local coordinate of an element and t is

the normal gradient of u with respect to the outward normal

to the boundary. Then, Eq. (9) for i = 1 to N is

transformed into

XN
j¼1

Hiju rj
� �

� Gijt rj
� �� �

¼ f ðriÞ; ð11Þ

where the coefficients Hij and Gij denote a concentrated

force generated at the jth scattering point and applied at

the ith observation point, which can be calculated by

numerically integrating the scalar product of the Green’s

function with interpolation shape functions over

elements,

Hij ¼
XL
e¼1

Z
Ce

o

on
Gðri; r0ðnÞÞUjðnÞdr0ðnÞ þ CðriÞdij; ð12Þ

Gij ¼
XL
e¼1

Z
Ce

G ri; r
0 nð Þ½ �Uj nð Þdr0 nð Þ; ð13Þ

where dij is the Kronecker delta function. These integrals

can be evaluated by the Gaussian integration algorithm.

After the discretization of Eq. (9) is done for all the

layers, the resulting numerical equations are assembled into

a global matrix equation by the boundary conditions of

continuity for displacement and traction across all inter-

faces. For instance, the continuities of displacement and

traction across the interface Cm are given by

u�mðrÞ ¼ uþmðrÞ
qmþ1m

2
mþ1t

�
mðrÞ

ð1� amþ1iÞ
¼ � qmþ1m

2
mt

þ
mðrÞ

ð1� amiÞ

8><
>: ; ð14Þ

where ‘‘-’’ denotes the top side of Cm toward the mth layer

and ‘‘?’’ denotes the underside of Cm toward the (m ? 1)th

layer. The boundary continuity condition of traction can be

further compacted as

tþmðrÞ ¼ �gmt
�
mðrÞ;

where

gm ¼ ð1� amþ1iÞqmm2m
ð1� amiÞqmþ1m

2
mþ1

After applying boundary continuity conditions to boundary

integral equations, Eq. (11) can be expressed as a matrix form:

Equation (15) expresses wave propagation through the

entire model, where the boundary coefficient submatrices

are calculated by Eqs. (12), (13) and the source vector on

the right side can be computed by Eq. (7). After solving the

linear system of Eq. (15) for u and t at all the nodes, we can

compute the seismic response at any receiving point in the

medium through back substitution of Eq. (9).

In the numerical implementation, we use an improved

block Gaussian elimination method to solve the matrix

equation for the improvement in implementation effi-

ciency. In seismic exploration, the source is generally

located in the near-surface and receivers are deployed at

H1�1� �G1�1�

. . . . . . . . . . . .

. . . . . . . . . . . .
Hmþmþ gmGmþmþ Hmþðmþ1Þ� Gmþðmþ1Þ�

Hðmþ1Þ�kþ gmGðmþ1Þ�mþ Hðmþ1Þ�ðmþ1Þ� Gðmþ1Þ�ðmþ1Þ�

. . . . . . . . . . . .

. . . . . . . . . . . .
HMþMþ gMGMþMþ

2
66666666664

3
77777777775

U1

..

.

..

.

Um

Tm

..

.

..

.

TM

2
66666666666664

3
77777777777775

¼

F

..

.

..

.

0

0

..

.

..

.

0

2
6666666666664

3
7777777777775

;

ð15Þ
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the free surface. In such a case, we calculate and assemble

the matrices H and G from deep to shallow to eliminate

coupling data on the interface between two adjacent layers

until the calculation reaches the surface. The resulting final

matrix equation is then solved for u and t at all the nodes

inside the surface layer. Note that the maximum memory

amount required for the global coefficient matrix is lim-

ited to the total node number of the biggest layer, which

saves memory and reduces computational costs. Fewer

elements per wavelength will reduce the size of the

resultant coefficient matrices. To improve computation

speed, we adopt a variable element dimension technique

in the program implementation. Since a discretization rate

of three points per wavelength (Campillo 1987) is suffi-

cient to make the numerical noise level negligible for

general applications, the element dimension for each

computational frequency is computed according to the

medium velocity and the frequency, and then the model is

automatically discretized. This improves the efficiency of

the BE method.

4 Numerical examples

Figure 2 shows a viscoelastic homogeneous model with a

velocity of 2500 m/s and three sources at different depths

1000, 2000, and 3000 m. Figure 3 shows synthetic seis-

mograms with surface survey for Q = 10 and Q = 100,

respectively. We see that the seismic resolution with

Q = 100 is much better than that with Q = 10. Particu-

larly, the synthetic amplitudes with Q = 10 decrease fast

with increasing source depths, with the synthetic seismo-

gram for the source at depth 3000 m almost invisible,

whereas the synthetic amplitudes with Q = 100 decrease

slowly with increasing propagation distances. The

synthetic amplitudes from three sources at different depths

are almost the same.

To access the effect of different Q values on wave prop-

agation,we calculate zero-offset synthetic seismogramswith

Q = 10, 20, 50, 100, 200, 500, and 1000, respectively. The

resulting synthetic records and their frequency spectra are

shown in Figs. 4, 5 and 6 for differentQ values and different

source depths. We see that the amplitudes decrease obvi-

ously with decreasing Q from 1000 to 10. For the same

propagation distance (depth), the decrease of Q values

lowers the dominant frequency and amplitude of seismo-

grams. For the same Q value, the resulting seismograms

become weaker with increasing depths. Particularly, the

seismogramswithQ = 10 andQ = 100 are almost invisible

as shown in Fig. 6. For the seismograms with Q over 100,

variations in amplitude are not significant, that is, the

Fig. 2 Geometry of a viscoelastic homogeneous model with three

sources at different depths

Fig. 3 Synthetic seismograms with surface survey for Q = 10 (a) and Q = 100 (b), respectively

Earthq Sci (2017) 30(2):97–105 101
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Fig. 4 Zero-offset synthetic seismograms (a) with the source at depth 1000 m and their frequency spectra (b) for different Q values

Fig. 5 Zero-offset synthetic seismograms (a) with the source at depth 2000 m and their frequency spectra (b) for different Q values

Fig. 6 Zero-offset synthetic seismograms (a) with the source at depth 3000 m and their frequency spectra (b) for different Q values

102 Earthq Sci (2017) 30(2):97–105
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Fig. 7 Simple multilayered viscoelastic model

Fig. 8 Snapshots at 1000 ms of waves propagating a simple multilayered viscoelastic model with Q2 = 10 (a), 50 (b), 100 (c), and 1000 (d)
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influence on amplitudes attenuation is small for high-enough

Q values. In conclusion, these figures show a prominent

influence of attenuation on wave amplitudes

A simple sedimentary model is shown in Fig. 7 with

parameters for each layer displayed in the figure. Numer-

ical simulations are conducted with different Q2 values of

10, 50, 100, and 1000. Figure 8 shows the snapshots at

1000 ms for Q2 = 10, 50, 100, and 1000, respectively. We

see that the variation of Q2 values has less effect on wave

propagation for small difference in Q between layers.

Otherwise, the reflection and transmission of waves are

possible to reflect the variation of Q values.

5 Conclusions

Most viscoelastic numerical simulations are based on the

finite-difference and finite-element methods. In this article,

we present an efficient alternative for full-waveform

method to simulate wave propagation in multilayered vis-

coelastic media. First, the constant-Q acoustic wave

equation is transformed into a corresponding viscoelastic

integral equation in terms of viscoelastic Green functions.

We then apply the conventional frequency-domain BEM to

the viscoelastic integral equation for accurate viscoelastic

numerical modeling. We extend the frequency-domain

viscoelastic BEM to multilayered media using the bound-

ary conditions of continuity for displacement and traction

across all interfaces. The resultant global coefficient matrix

is sparse and narrow banded, depending on the complexity

of the model. We use an improved block Gaussian elimi-

nation method to solve the sparse matrix equation for the

improvement in implementation efficiency. To improve

computation speed in the program implementation, we

adopt a variable element dimension technique based on the

discretization rate of three points per wavelength. The

element dimension for each computational frequency is

computed according to the medium velocity and the fre-

quency, and then, the model is automatically discretized.

Compared to the finite-difference and finite-element

methods, the viscoelastic boundary element method enjoys

a distinct characteristic of the explicit use of boundary

continuity conditions of displacement and traction, leading

to a semi-analytical solution with sufficient accuracy for

simulating the viscoelastic effect across irregular inter-

faces. Numerical experiments to study the viscoelastic

effect of different Q values on the attenuation and disper-

sion of seismic waves demonstrate the accuracy and

applicability of the method.
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